Sign In | Join Free | My qualitytoyschina.com
China Beijing Plink AI Technology Co., Ltd logo
Beijing Plink AI Technology Co., Ltd
Beijing Plink AI is an expert of cloud-to-end one-stop solution.
Active Member

3 Years

Home > Embedded PC Board >

8gb 128 Bits Ascend Atlas 200 Ai Module Ubuntu Deep Learning Carrier Board Edge Computing

Beijing Plink AI Technology Co., Ltd
Contact Now

8gb 128 Bits Ascend Atlas 200 Ai Module Ubuntu Deep Learning Carrier Board Edge Computing

  • 1
  • 2

Brand Name : Hua Wei

Model Number : Ascend Atlas 200

Place of Origin : China

MOQ : 1set

Price : To be negotiated

Payment Terms : L/C, D/A, D/P, T/T

Supply Ability : Batch purchase price negotiation

Delivery Time : 15-30 work days

NAME : Ascend Atlas 200 AI Module 8 GB 128 bits Ubuntu Deep Learning Carrier Board Edge Computing

Keyword : Ascend Atlas 200 AI Module 8 GB 128 bits Ubuntu Deep Learning Carrier Board Edge Computing

AI processor : Two Da Vinci AI cores Eight A55 ARM cores (maximum frequency: 1.6 GHz)

AI compute power : Half precision (FP16): 4/8/11 TFLOPS Integer precision (INT8): 8/16/22 TOPS

Half precision (FP16) : 4/8/11 TFLOPS

Integer precision (INT8) : 8/16/22 TOPS

Memory : 8 GB 128 bits LPDDR4X

Storage : 64 MB eMMC 4.5

Net weight : 30g

Dimensions : 8.5 mm x 52.6 mm x 38.5 mm

Contact Now

Ascend Atlas 200 AI Module 8 GB 128 bits Ubuntu Deep Learning Carrier Board Edge Computing

Hua Wei Ascend Atlas 200 AI Accelerator Module

The Hua Wei Ascend Atlas 200 AI accelerator module has eight Cortex-A55 cores and provides common peripheral ports such as I2C, USB, SPI, and RGMII. It can be used as an embedded system CPU.You can burn the OS to the embedded multimedia controller (eMMC) flash or an SD card. After simple configuration, the ARM CPU in the Atlas 200 AI accelerator module can run users' AI service software.Generally, in this application mode, the Atlas 200 AI accelerator module is connected to simple external devices such as IP cameras (IPCs), I2C sensors, and Serial Peripheral Interface (SPI) displays.The coprocessor application mode and main processor application mode of the Atlas 200 AI accelerator module are similar. The ARM processor of the Hua Wei Ascend Atlas 200 AI accelerator module can still run users' AI service software. The difference is that when the Atlas 200 AI accelerator module is used as a coprocessor, the system has a main processor. The main processor controls operations on the Atlas 200 AI accelerator module, such as peripheral access, power-on, hibernation, and wakeup. The external interfaces required by users' AI service software are also transferred by the main processor.The main processor can control the Hua Wei Ascend Atlas 200 AI accelerator module to enter the deep sleep state through the GPIO pins. When necessary, the Hua Wei Ascend Atlas 200 AI accelerator module can quickly wake up to process AI services. This mechanism reduces the power consumption.

Specifications about Hua Wei Ascend Atlas 200

Feature

Specification

AI processor

Ascend 310 AI Processor

Two Da Vinci AI cores

Eight A55 ARM cores (maximum frequency: 1.6 GHz)

AI compute powera

Half precision (FP16): 4/8/11 TFLOPS

Integer precision (INT8): 8/16/22 TOPS

Memory

8G 128 bits LPDDR4X

Storage

64 MB eMMC 4.5

Encoding/Decoding capability

H.264/H.265 decoder, 20-channel 1080p (1920 x 1080) 25 FPS, YUV420

H.264/H.265 decoder, 16-channel 1080p (1920 x 1080) 30 FPS, YUV420

H.264/H.265 decoder, 2-channel 4K (3840 x 2160) 60 FPS, YUV420

H.264/H.265 encoder, 1-channel 1080p (1920 x 1080) 30 FPS, YUV420

JPEG decoding at 1080p (1920 x 1080) 256 FPS and encoding at 1080p (1920 x 1080) 64 FPS, up to 8192 x 4320 resolution

PNG decoding at 1080p (1920 x 1080) 24 FPS, up to 4096 x 2160 resolution

Temperature

Operating temperature: -25°C to +80°C (-13°F to +176°F)

Storage temperature: -25°C to +85°C (-13°F to +185°F)

Humidity (RH, non

condensing)

Operating humidity: 5% to 90%

Storage humidity: 5% to 95%

Power consumption

Operating voltage: 3.5 V to 4.5 V; recommended typical value: 3.8 V

Typical power consumption

– 4 GB: 6.5 W

– 8 GB: 9.5 W

Maximum altitude

< 5000 m When the altitude is between 1800 m (5905.44 ft.) and 5000 m (16404 ft.), the maximum operating temperature decreases by 1°C (1.8°F) for every increase of 220 m (721.78 ft.) in altitude.

Dimensions (H x W x D)

8.5 mm x 52.6 mm x 38.5 mm (0.33 in. x 2.07 in. x 1.52 in.)

NOTE

The connector model of the Atlas 200 AI accelerator module is fixed. You can select male connectors with different heights to determine the height of the Atlas 200 AI accelerator module.

Net weight

30g

Operating system (OS)

Ubuntu 16.04

Deep learning framework

TensorFlow, Caffe

8gb 128 Bits Ascend Atlas 200 Ai Module Ubuntu Deep Learning Carrier Board Edge Computing


Product Tags:

8gb ascend atlas 200 ai module

      

128 bits ascend atlas 200 ai module

      
Quality 8gb 128 Bits Ascend Atlas 200 Ai Module Ubuntu Deep Learning Carrier Board Edge Computing wholesale

8gb 128 Bits Ascend Atlas 200 Ai Module Ubuntu Deep Learning Carrier Board Edge Computing Images

Inquiry Cart 0
Send your message to this supplier
 
*From:
*To: Beijing Plink AI Technology Co., Ltd
*Subject:
*Message:
Characters Remaining: (0/3000)